Iterative Parameter Estimation Algorithms for Dual-Frequency Signal Models

نویسندگان

  • Siyu Liu
  • Ling Xu
  • Feng Ding
چکیده

This paper focuses on the iterative parameter estimation algorithms for dual-frequency signal models that are disturbed by stochastic noise. The key of the work is to overcome the difficulty that the signal model is a highly nonlinear function with respect to frequencies. A gradient-based iterative (GI) algorithm is presented based on the gradient search. In order to improve the estimation accuracy of the GI algorithm, a Newton iterative algorithm and a moving data window gradient-based iterative algorithm are proposed based on the moving data window technique. Comparative simulation results are provided to illustrate the effectiveness of the proposed approaches for estimating the parameters of signal models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power

Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...

متن کامل

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

Noise Benefits in Expectation-Maximization Algorithms

This dissertation shows that careful injection of noise into sample data can substantially speed up Expectation-Maximization algorithms. Expectation-Maximization algorithms are a class of iterative algorithms for extracting maximum likelihood estimates from corrupted or incomplete data. The convergence speed-up is an example of a noise benefit or"stochastic resonance"in statistical signal proce...

متن کامل

Efficient Sequential Extremum Estimation and a Comparison with Maximization by Parts

This research consider the problem of efficiently estimating a parameter of interest when the model is complicated by a vector of nuisance parameters. If the model is nonadaptive we must often resort to full information estimation to gain an efficient estimator for the parameter of interest. In certain cases full information estimation can be computationally intensive and lead to poor finite sa...

متن کامل

Estimation of single-tone signal frequency by using the L-DFT

Frequency estimation of complex sinusoidal signal parameters for mixed Gaussian and impulse noise environment is considered. We assume that the sinusoid has constant amplitude. The first stage in the proposed algorithm is calculation of the L-DFT forms for various parameters. Then, an optimal value of the L-DFT parameter is estimated as a value minimizing the L-DFT energy. Position of the L-DFT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017